Let’s break out the alcohol

Written by      

While I was chatting recently with Erick Brenstrum from MetService (who writes our weather columns), he told me that the April 2006 temperature for Svalbard Island was 12.4°C above the 1961–1990 average. In fact, every one of the last six months has been significantly warmer than normal. Although the island is at 80°N—well north of Norway—the surrounding sea was ice-free in January. Global warming is predicted to be more rapid and severe in the Northern hemisphere than the Southern because land heats more rapidly than ocean and there is a lot more land in the Northern hemisphere. Nonetheless, researchers are taken aback by the magnitude of apparent warming in the Arctic. The North Pole could be free of ice in summer within 10–20 years!

Many scientists and activists are insistently convinced the world needs to take urgent action to avoid uncomfortable warming. The Kyoto Protocols increasingly look too little too late, and New Zealand has so far done little to reduce its production of greenhouse gases.

In the GeoNews section of this issue is an account of a detailed proposal by a new NZ company, BioJoule Technologies, to produce fuel ethanol from plantations of special willow cultivars. BioJoule is being set up by Genesis Research and Development of Auckland, established in 1994 as the country’s first biotechnology company. Last year its founder, Jim Watson, was president of the Royal Society of New Zealand, an indication of the esteem in which he is held. The BioJoule proposal deserves to be taken seriously. Ethanol is a proven fuel for vehicles—we even had a few buses running on the related methanol on the streets of Auckland back in the days of the Liquid Fuels Trust Board in the 1980s. Producing ethanol from plant cellulose as BioJoule proposes has only become economically feasible since fuel prices have risen so dramatically. The economics of the project are strengthened because a useful sweetener (xylitol) and natural lignin—a wood-derived replacement feedstock for many chemicals and plastics—would be simultaneously produced from the willows. Since the fuel is being produced from plants, it recycles atmospheric carbon rather than adding more, as happens when fossil fuels are burned. But not only does ethanol have the potential to reduce our greenhouse gas emissions, it would save foreign exchange (remember our current accounts deficit), create local industry, provide a new economically viable agricultural enterprise and by supplanting some animals, help to reduce eutrophication of lakes and waterways.

Biojoule estimates that to replace 10 per cent of our petrol with ethanol (320,000,000 litres annually) would require 76,000 ha of energy plantations and about 30 $50 million bio-refineries, although fewer, larger refineries could prove more economic. Vehicles can be modified to run on pure ethanol, however the present proposal is for a 10 per cent ethanol 90 per cent petrol blend initially, but the ratio could be easily increased later.

BioJoule has willow trials underway already and now seeks $5 million to construct a pilot plant for making ethanol, xylitol and lignin.

I don’t think there are many downsides. Some would lament the loss of land from more traditional agricultural products. There have been suggestions that ozone and some other organic chemical undesirables are produced at higher levels by ethanol-fuelled engines. Social engineers may not like ethanol because it could enable a continuation of our profligate ways with cars. Some would like to see the use of private motor vehicles curtailed, peri-urban sprawl reined in and public transport re-enfranchised. Despite these quibbles, I think that the BioJoule proposal deserves our strong support.

Liquid fuels represent only a portion of our energy requirements. Although there are trials in Europe using willows as fuel for power plants, better possibilities may exist. For New Zealand, with a small population and a windy aspect, wind and perhaps tidal power might just suffice. Where populations are dense and wind and water in short supply, other measures will be needed. Solar panels remain expensive, although supposedly always on the cusp of major cost reductions. However, by far the most interesting possibility I have read of in the last six months is a modified form of nuclear generation. Nuclear is, of course, the energy of the universe. It heats the deeper layers of the Earth, fueling volcanism, and powers the Sun and stars. Surely to be pro-solar and anti-nuclear is the ultimate in NIMBYism!

Last December’s Scientific American contained an article dealing with advanced liquid-metal cooled reactors (ALMR), in which fast neutrons heat liquid sodium to eventually produce the usual steam. Almost all of the world’s 440 reactors use slow neutrons to heat water, a different process. These reactors offer several significant advantages. Present reactors use only about five per cent of the energy present in their radioactive fuel—the rest ends up as waste. ALMRs use 99 per cent—they burn almost all the fuel. A large power station would produce half a cubic metre of radioactive waste a year and that waste would only need to be stored for 300 years. Furthermore, most existing radioactive waste could be reprocessed into fuel for these plants so no new uranium would need to be mined for hundreds of years. Finally, they can be run so as to produce no plutonium suitable for weapons manufacture. And no greenhouse gases. A tantalizing prospect indeed.

More by