Geo News

Finding faults

Just after midnight on November 14, 2016, more than 24 fault lines around Kaikōura ruptured in spectacular fashion. One of these rifts—the previously unmapped Papatea Fault—threw up a few extra surprises for scientists. Normally, the rupture of a fault is caused by a build-up of stress. But Papatea was stress-free until its rupturing neighbours squeezed it, triggering a violent fracture. In a matter of seconds, the earth split open along 19 kilometres and sections of mountainous land were shifted upwards by eight metres. Of the 24 fault lines, Papatea produced the largest vertical movement. At first, Papatea’s behaviour confused scientists, because the fault wasn’t under strain. In a study published in Science Advances in October, New Zealand and Canadian researchers used before-and-after images of the fault line to create a model and figure out what happened. It’s another unusual aspect of the most complex earthquake ever studied, with implications for assessing seismic risk. Current earthquake forecasting is based on the strain model, where faults accumulate tension until they fail, but Papatea shows that displacement is also a risk, says Mark Stirling, chair of earthquake science at the University of Otago: “A ten-metre displacement in a built-up area or beneath a critical facility, such as a large dam, would have significant consequences.”


Thanks, you're good to go!

Thanks, you're good to go!

{{ contentNotIncluded('company') }} has not subscribed to {{ contentNotIncluded('contentType') }}.

Ask your librarian to subscribe to this service next year. Alternatively, use a home network and buy a digital subscription—just $1/week...

Go back


Subscribe to our free newsletter for news and prizes


Give it a crack, try NZGeo for $1

Unlimited access to every NZGeo story ever written and hundreds of hours of natural history documentaries on all your devices.

Already a subscriber? Sign in