Stevenson’s close call
On a brief visit to Auckland, the celebrated author of Treasure Island almost didn’t make it out of the harbour.
On a brief visit to Auckland, the celebrated author of Treasure Island almost didn’t make it out of the harbour.
The soft mudstone cliffs of south Taranaki hold clues to creatures past. Fossil collectors unearthed seven specimens of an unknown species here, including a complete skull. Close analysis revealed this ancient animal was a monk seal—now extinct, but new to science. The seal would have been a bit bigger than a sea-lion, reaching two and a half metres in length and weighing 200 to 250 kilograms, and would have frequented the waters around New Zealand some three million years ago. Researchers gave it a pop culture-inspired name: Eomonachus belegaerensis, after the largest ocean, Belegaer, in JRR Tolkien’s mythical world of Middle-earth. The new seal has already rewritten history. Before now, monk seal fossils had been found only in the northern hemisphere, and the two living monk seal species are found in Hawaii and the Mediterranean. Monk seals are part of a sub-family called Monachinae, which also includes elephant seals and Antarctic seals. There are several stories explaining seal evolution. The prevailing one goes that Monachinae evolved in the North Atlantic and travelled south. But with the discovery of a South Pacific monk seal, the scales tipped in favour of a different origin story. Perhaps all three types of Monachinae evolved in a “southern cradle”, and then some of the monk seals headed north. Felix Marx, curator of marine mammals at Te Papa, is anticipating more finds. “New Zealand is incredibly rich in fossils, and so far we have barely scratched the surface,” he says. “Who knows what else is out there?”
A steamer goes down off Wellington.
Life in the subantarctic is difficult enough for those who arrive prepared. In 1864, castaways from two storm-wrecked ships, the Grafton and the Invercauld, landed on opposite ends of Auckland Island. Survival became a daily challenge. Each group tackled it differently: one fell to violence and cannibalism, while the other became a close-knit brotherhood. Were the wildly different fates of men of the Grafton and the Invercauld down to luck—or leadership?
It was the sensation of 1902—a celebrity bodybuilder toured New Zealand encouraging locals to get ripped.
The second-oldest collection of Māori artefacts in the world—exceeded only by the one amassed by James Cook—is held in Russia. These 200-year-old treasures have immense value to iwi at the top of the South Island, whose ancestors traded with Russian explorers. Now, there’s a movement to bring these taonga home.
The Burgess Gang brings terror to the goldfields.
In 1902, the steamship Ventnor was carrying the bones of 499 Chinese gold miners from New Zealand to southern China when it sank off the coast of Northland. For more than a century, no one knew where the ship lay. Its discovery seven years ago kindled questions and disputes that blazed into controversy earlier this year. Who decides what happens to a wreck on the bottom of the sea? And what’s the rightful resting place of men who never made it home?
This animal lived on the island of Madagascar 66 million years ago, a time when dinosaurs ruled and most mammals were the size of mice. It was about the size of a cat, with robust claws, suggesting it was capable of digging. Newly named Adalatherium (or “crazy beast” in a combination of Malagasy and Greek), it’s the first complete skeleton to be found that belongs to a group of mammals called gondwanatherians, indicating what this unknown southern hemisphere family may have actually looked like. “This is the first real look at a novel experiment in mammal evolution,” says Alistair Evans from Monash University, one of the study’s authors. “The strangeness of the animal is clearly apparent in the teeth—they are backwards compared to all other mammals, and must have evolved fresh from a remote ancestor.”
Scientists fight over old bones.
Old bones are a staple of museum collections, but only a handful of people in New Zealand have the skills to prepare them for display. Recovering the skeleton of a large animal—rotting it down, preparing, cleaning and articulating it—is a long and demanding journey that only the most dedicated pursue.
The return of Halley’s Comet in 1910 prompted a deluge of fake news.
Thanks to early explorers’ lack of dental hygiene, we can decipher clues about their lives.
It started with an insect preserved in amber. A round, shiny beetle a couple of millimetres long was found in Myanmar, encased in its golden tomb. It lived about 100 million years ago, in the mid-Cretaceous period, in a forest ecosystem on Gondwanaland. Upon close examination of the fossil, scientists from China classified it as part of the Cyclaxyridae family, a group of beetles with just two living relatives, both found in New Zealand. They inhabit the sooty mould ecosystem peculiar to New Zealand’s beech forests. In this community of organisms, scale insects live within the bark of beech trees, eating their sap and excreting glittering beads of honeydew. Bats and birds such as tūī and kākā feed on the honeydew, while excess dew fuels the growth of dense black fungus. This ‘sooty mould’ is eaten by beetles, including the two living cyclaxyrid species, Cyclaxyra jelineki and Cyclaxyra politula. Upon the Burmese amber discovery, scientists, including Richard Leschen from Manaaki Whenua–Landcare Research, re-evaluated another beetle fossil from Baltic amber, placing it in the cyclaxyrid family too. This trio of cyclaxrids suggests that sooty mould beetles (and the associated ecosystem) were once widespread across the supercontinent Pangaea. Now, they survive only on the semi-submerged Zealandia as relics. The search is on for more sooty mould beetle fossils—including here in New Zealand.
A victim of the eruption of Vesuvius surprised researchers.
‘Captain Calder’ scams the government.
Picture the moa. A flightless feathered giant, reminiscent of an emu or cassowary. Over the last decade, genetic and skeletal evidence has begun to trace its family tree back to the age of the dinosaurs. Some 80 million years ago, the first ratites—the ancestors of today’s kiwi, emu and cassowaries—emerged. But the closest cousins of the moa were not kiwi, nor the cassowaries next door, but appeared to be an odd family of quail-sized birds an ocean away. The ground-dwelling tinamou is found across Central and South America, and can fly (although it prefers not to). With such a relationship, you would expect these birds to have some morphological similarities. But these have eluded scientists—until now. It was a serendipitous discovery. A research group at Flinders University in Australia were investigating the enigmatic cassowary, a rainforest-dwelling titan from northern Queensland. The team, including New Zealander Trevor Worthy, used cutting-edge scanning technology to 3D-image the cassowary’s throat structures—those involved in breathing, eating and vocalising. “Scanning lets us see details that we wouldn’t be able to otherwise, including the shapes of internal structures, without causing damage to them,” says the lead author on the paper, PhD candidate Phoebe McInerney. As part of the investigation, the team also imaged the throats of other birds in the palaeognath (“old jaws”) family, an ancient lineage separate to all other living birds. They found that tinamou and moa had comparable throat anatomy—a morphological similarity that can’t be seen in skeletons. The tinamou and moa were singing the same tune after all. The discovery further disproves “Moa’s Ark”—the idea that moa have inhabited Zealandia since the time of Gondwanaland. Instead, it’s possible that the moas’ ancestor flew to Zealandia from America (perhaps via Antarctica) after the southern continents drifted apart.
Museums have a gender equality problem. Wander the halls of any natural history gallery and chances are, you’ll see more male than female specimens on display. Researchers at London's Natural History Museum analysed 2.5 million records from five prominent museums around the world and found that just 40 per cent of bird specimens are female, while 48 per cent of mammal specimens are female. This slight percentage difference equates to 40,000 more male mammals housed in museums. It’s not just an issue for the stuffed display animals, either—the male bent also afflicts research collections. When it comes to type specimens—the ‘official’ specimen used to scientifically describe a species—the sex ratio drops further, with just 27 per cent of birds and 39 per cent of mammals being female. These ratios have remained unchanged for the last 130 years, except in species with marked sexual dimorphism. This is where males have ostentatious features such as bright colours while females may be more understated in appearance. In such species, the proportion of females in museum collections has decreased. This bias towards males has implications for our understanding of evolution, genetics and ecology. “Natural history collections play a critical role in … answering vital questions for the future of biodiversity,” the study authors wrote. “These results imply that previous studies may be impacted by undetected male bias, and vigilance is required when using specimen data, collecting new specimens and designating types.”
On Scotland’s remote St Kilda island in the summer of 1840, a group of fishermen found a strange seabird sleeping on a ledge. It was black-and-white, flightless, and enormous. The men took it home to their village and tied it up in a stone hut. For three days the bird complained and tried to bite anyone that came near. Then a wild storm arose. Fearful the bird was a witch, and had sent the tempest to punish them for capturing it, the superstitious villagers stoned it to death. It took an hour to die. In reality, the witch-bird was a great auk—the last one ever documented in the British Isles. Four years later, the last pair in existence was killed in Iceland by hunters looking for museum specimens. The species—sometimes known as the penguin of the north—had ranged across the North Atlantic in the millions. What happened? Was the species in decline before intensive harvesting started in the 1500s—or was human hunting alone enough to drive such a numerous species into oblivion? To find out, genetic researcher Jessica Thomas from the University of Swansea analysed the mitochondrial DNA of 41 long-dead great auks. The data showed the species had enjoyed high genetic diversity and a constant population size for thousands of years, and that great auks from across the North Atlantic were able to meet and breed. The researchers then simulated how much hunting would have been necessary to drive the great auk to extinction within 350 years, and found that an annual harvest of 210,000 birds and fewer than 26,000 eggs would have inevitably led to extinction. Sailors’ journals and other historic reports suggest the actual number of birds killed for their meat, eggs, and feathers is likely to have been far higher. Then the museum trade finished them off. “There are lot of very gruesome sailors’ records in terms of how they used to kill them,” says Thomas. “They would have these huge pits where they would corral the great auks into stone huts and then burn them with the oil from their dead relatives.” The study highlights that “pretty much anything is susceptible to extinction”, says study co-author Michael Knapp from the University of Otago, where Thomas was based for some of her research. “People went to the North Atlantic and it was full of great auks. Nobody would have thought there was any risk.” Some of the great auk’s relatives—the puffin, the murre—are still hunted today, and should be more closely monitored, says Knapp. “Anything we exploit in large numbers we need to be very careful about, even if we think there’s a lot of them.”
The British medal that inspired the New Zealand Cross.
Loading..
3
Unlimited access to every NZGeo story ever written and hundreds of hours of natural history documentaries on all your devices.
$1 trial for two weeks, thereafter $8.50 every two months, cancel any time
Already a subscriber? Sign in
Signed in as . Sign out
Thanks, you're good to go!
Thanks, you're good to go!
Ask your librarian to subscribe to this service next year. Alternatively, use a home network and buy a digital subscription—just $1/week...
Subscribe to our free newsletter for news and prizes